CHAMOT

SB 202190

CM006-5SM CM006-10SM

L N U S O O

- 1 产品简介
- 2 产品使用
- 3 产品应用数据

SB 202190

编号: CM006-5SM

CM006-10SM

规格:

5 mg

10 mg

类别: 小分子

产品简介

CAS号: 152121-30-7

分子式: C₂₀H₁₄FN₃O

分子量: 331.34

储存	Powder	Inert atmosphere,2-8°C	
	In solvent	-20°C:3-6 月	-80°C:12月
溶解度	DMSO	66.0 mg/mL (199.2 mM)	
	Ethanol	12.0 mg/mL (36.2 mM))	
	Water	Insoluble	
使用配方		5%DMSO+40%PEG300+5%Tween80+50%water	8 mg/mL

产品使用

原液配制	Volume Mass Concentration	10 mg	50 mg	1 g
	1mM	30.1805 mL	150.902 mL	3018.05 mL
	5mM	6.0361 mL	30.180 mL	603.61 mL
	10mM	3.0180 mL	15.090 mL	301.80 mL

产品应用数据

Biological Activity

Target	ρ38 ΜΑΡΚα	р38 ΜΑΡΚβ			
	IC50:50nM	IC50:100nM			
Description	Mitogen-activated prote	ein kinase (MAPK) cascades regulate signal transduction involved in cell			
	proliferation and death. SB-202190 is a potent cell-permeable inhibitor of p38 MAPK that inhibits p38 and p38 β with IC50 values of 50 nM and 100 nM, respectively. SB-202190 at 5 μ M inhibited the activation of p38 in HaCaT cells. The protein expression of COX-2 was almost completely blocked by 5 μ M SB-202190 at 8 and 12 h post the exposure to UVB irradiation (250 J/m). SB-202190 at the same concentration also significantly abrogated UVB induced <i>cox-2</i> mRNA in HaCaT cells. The inhibitory effect of SB-202190 on PGE ₂ production after UVB was observed in HaCaT cells treated by 5 μ M SB-202190 for one hour. Bull serum albumin induced the gene expression of the inflammation marker				
	MCP-1 more than 30-fold in renal tubular cells, while pre-incubation with 10 μ M SB-202190				
	decreased the gene exp	ression to the basal level. In HK-2 cells, 10 µM SB202190 treatment			
	significantly reduced TG	iF-β1-induced gene expression. Two doses of SB-202190 (6.25 μg/dose, i.d.			
	administered) prevented	d the development of blisters and a positive Nikolsky's skin induced by PV			
	IgG injection (1.5 mg of	IgG/g body weight) in neonatal mice. The PV IgG-mediated activation of			
	phospho-p38MAPK imn	nunoreactivity in the skin was abrogated in SB-202190-treated mice.			
Mechanism	SB-202190 is a pyridinyl	imidazole that inhibits p38 MAPK via competing with ATP.			

Cell Study

	<i></i>				
Cell Lines	Concentration	Assay Type	Time	Activity Description	Data Sources
A 549	50 μΜ	Function Assay	1 h	decreases the level of IL-8	24179688
A549	0.3/3/30 μM	Function Assay	1 h	significantly attenuates ATPγS- mediated COX-2 protein and mRNA expression and promoter activity	23680674
A549	10 μΜ	Function Assay	0-30 min	inhibits ATPyS induced p42/p44 MAPK and p38 MAPK phosphorylation	23680674

Animal Study

Dose	Nude Mice: 5 mg/kg (i.p.), 25 μg/kg (i.p.) Mice: 20 mg/kg (i.p.)	
Administration	i.p.	